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1. Introduction

When vaccination was discovered in the eighteenth century contemporaries raised the question
of the effect on the level of mortality of the elimination of smallpox as a cause of death.
Since persons who would otherwise have died of smallpox would evidently die of other causes,
deaths due to other causes would increase. What would be the overall effect of eliminating
smallpox? For example, how much would the expectation of lift be increased? What proportion
of persons would survive to various ages? In general, what would the various life table statistics
look like after the elimination? Since all life table statistics are determined, to within a close
approximation, by the probabilities of death for each year of age, the general problem is reduced
to this. How would the probability of death over a given age interval change as the result of
eliminating a particular cause of death?

The answer to this question turns out to be more difficult than one might suspect. The
essential difficulty may be illustrated by considering a situation in which a group of N persons
who attain age x experiences D deaths before reaching age x+n of which Ds are due to smallpox.
We would in this case estimate the probability of death by causes other than smallpox by
(D−Ds)/M . Now, at first glance, it might seem reasonable that this would be the probability
of death from all remaining causes upon the elimination of smallpox. Upon further reflection,
however, one suspects that this would give too low an estimate of the probability of death.
Why? Because the Ds persons who do not die of smallpox are still subject to death by other
causes, and it is reasonable to suppose that some of them will die. Indeed, in the special case
of n = ∞ they must die, else we be granting immortality to persons who would previously
have died of smallpox. One suspects, then, that the probability of death once smallpox has
been eliminated will be greater than (D − Ds)/N . How a much greater? That is the difficult
question which gave rise to what is known as the theory of multiple decrements. This theory
was developed in the late nineteenth century by actuaries and has recently been recognized as
a special branch of the theory of stochastic processes. Similar problems arise in other areas,
and the phrase “competing risks” is some-times used in place of “multiple decrements.”

2. Probabilities of Death by Different Causes

It is conventional in discussing probabilities of death to refer to “survival to age x” and to use
the notation s(x). One might of course refer to “death after age x,” for this means exactly the
same thing, and use the notation d(x). So long as causes of death are not distinguished, there
is no reason to prefer either form. When considering causes of death, however, the phrasing in
terms of death is distinctly superior, for the phrase “death by cause i after age x” is sensible
whereas “survival to age x by cause i” is gibberish. Actuaries are apparently unmoved by this
argument and persist in the unnatural notation. We shall not follow suit in these notes.

Probabilities of death by several causes may be expressed in terms of mathematical func-
tions just as in the case where no causes of death are distinguished. (In the context of multiple
decrement theory this is usually referred to as the “single decrement case.”) One function is
introduced for each cause of death. Consider
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d1(x) = d2(x) =
{

1/2 − x/200 if x ≤ 100;

0 otherwise.

These functions may be regarded as giving the probabilities of death after age x by either of
two different causes. In particular, d1(0) gives the probability of dying of the first cause, d2(0)
the probability of dying from the second cause. There are evidently no other causes of death
in this example, for d1(0) + d2(0) = 1. The probability of dying of the i − th cause between
age x and age x + n is given by di(x) − di(x + n), i = 1, 2. The conditional probability of
death by the i − th cause between age x and age x + n given survival to age x is given by
(di(r) − di(x + n))/d(a), where d(x) is defined to be d1(x) + d2(x), the probability of survival
to age x. These expressions are derived just as in the single decrement case.

3. Forces of Mortality
The key to the solution of the multiple decrement problem is the concept of the “force of
mortality” due to a particular cause of death. Although the force of mortality is an intrinsically
probabilistic concept, the conventional actuarial treatment is nonprobabilistic and accordingly
somewhat awkward. A good exposition of the actuarial perspective, which recognizes the
awkwardness, is given in [6]. The probabilistic approach has been developed in a series of
papers by Hoem, of which [2] and [3] are particularly relevant here. Consider the conditional
probability of death by cause i between age x and age a + n given survival to age a. This
probability will approach zero as the length of the age interval is taken smaller and smaller.
Suppose however that this conditional probability is divided by h, so that we are referring to
a probability of death per unit time. This quantity approaches a positive limiting value as h
approaches zero, and this limiting value is called the force of mortality at age x due to cause
i. Applying this definition we find that

lim
h→0

di(x) − d(x + n)
hd(x)

=
−1
d(x)

lim
h→0

di(x + h) − di(x)
h

=
−d′i(x)
d(x)

The force of mortality for cause i at age x is denoted by µ(x).
Forces of mortality are additive in the sense that the force for any two causes of death

taken together as a single cause equals the sum of the forces for the individual causes. By
definition, the force for cause i and cause j regarded as a single cause equals

lim
h→0

(di(x) + dj(x)) − (di(x + h) + dj(x + h))
hd(x)

But this equals

lim
h→0

di(x) − di(x + h)
hd(x)

+ lim
h→0

dj(x) − dj(x + h)
hd(x)

which in turn equals µi(x)+µj(x). In particular, the force of mortality for all causes combined
is the sum of the forces for all the individual causes. The overall force of mortality at age x is
denoted by µ(x).

Forces of mortality are defined by the equations
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µi(x) =
−d′i(x)

d(x)
. (3.1)

Suppose we are given the forces of mortality and wish to determine the probability functions
di. How shall we proceed? We begin by solving the differential equation

µ(x) =
−d′(x)
d(x)

(3.2)

for the function d(x). This yields

d(x) = exp{−
∫ x

0

µ(a)da}

Now (3.1) may be written

µi(x)d(x) = −d′i(x).

Integrating both sides of this equation from x to L and taking the limit as L goes to infinity
we find that

di(x) =
∫ ∞

x

µi(a)d(a)da. (3.3)

Equations (3.2) and (3.3) together give the desired expression of the probability functions di

in terms of the force of mortality functions µi.
We have said that the force of mortality is an intrinsically probabilistic concept. Does

it have a direct probabilistic interpretation? In the following sense, yes. It follows from the
definition that hqi

x, the probability, for a person aged x, of death by cause i before age x + h,
equals µih+o(h) where o(h) is a quantity which goes to zero as h goes to zero. (In fact, o(h)/h
goes to zero as h goes to zero, a fact which figures in the following paragraph.) Consequently
the quantity µih may be regarded as an approximation to hqi

x. In particular, taking h = 1,
µi(x) approximates qi

x. This is the easiest way to remember what the force of mortality means.
This interpretation of the force of mortality may be used to give a probabilistic derivation

of equations (3.1, 3.2, 3.3). Let the force of mortality function µi for all causes be given and
let d(x, h) denote the probability of death between the ages x and x + h. By the definition
of conditional probability, d(x, h) = (µ(x)h + o(h))d(x), and since d(x, h) + d(x + h) = d(x),
we find that (µ(x)h + o(h))d(x) + d(x + h) = d(x). Multiplying both sides of this equation by
1/hd(x) and rearranging terms yields

µ(x) +
o(h)
h

=
d(x) − d(x + h)

hd(x)
.

Upon taking the limit of both sides of this equation we see that the left side goes to µ(x) and
the right to −d′(x)/d(x), hence we obtain equation (3.1). Equations (3.2) and (3.3) follow as
before.
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The above derivation is in fact a special case of the derivation of the Chapman-Kolmogorov
equations for a finite state, continuous time Markov process. For an introductory account see
[4].

4. Solution of the the Multiple Decrement Problem
We return now to the problem which motivated the development of all this mathematical
machinery. That would be the effect on mortality of the elimination or a particular cause
of death? We answer this question by assuming that the elimination of the cause of death
in question means that the force of mortality from this cause will become zero at every age
and that the force of mortality due to all other causes will remain unchanged. Given that
the original forces of mortality are µ1, µ2, ..., µn, and given that the i − th cause of death is
eliminated, the new force of mortality for all remaining causes will then be

µ∗ =
∑
j 6=i

µj

and the new probability of dying after age x from any cause will be

d∗j (x) =
∫ ∞

x

d∗(x)µj(x)dz

The probability of dying after age x of the j − th cause, j 6= i, will be

d∗j (x) =
∫ ∞

x

d∗(x)µj(x)dx.

These three expressions define all probabilities of death under the hypothesis of the elimination
of the i − th cause of death.

Let us return to the example of section 2, in which there are two causes of death with
probabilities given by

d1(x) = d2(x) =
{

1/2 − x/100 if x ≤ 100;
0 otherwise.

The probability of death after age x by one or the other cause equals d1(x)+d2(x) = 1−x/100
if x < 100 and zero otherwise. The total force of mortality at age x is given by

−d′(x)
d(x)

=
1/100

1 − x/100
= (100 − x)−1

for x < 100. For x > 100 the force of mortality is undefined. Likewise, the forces of mortality
for causes 1 and 2 are given by µ1(x) = µ2(x) = (200 − 2x)−1.

If the second cause of death is eliminated in this example, the new force of mortality will
imply be µ∗(x) = (200 − 2x)−1 and the new probability of death after age x will be given by

d∗(x) = exp{−
∫ x

0

(200 − 2z)−1dz}.
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This expression may be evaluated directly, or one may observe that it equals

exp{−1
2

∫ x

0

(100 − x)−1dz} =
[
exp{−

∫ x

0

(100 − z)−1dz}]1/2

= d(x)1/2

= (1 − x/100)1/2

Using this expression we can answer any question involving the new probabilities of death.
Consider for example the expectation of life at birth. It is given by

∫ 100

0

d∗(x)dx =
∫ 100

0

(1 − x/100)1/2dx

=
[−200

3
(1 − x/100)3/2

]100
0

= 200/3

= 66.7 years

By comparison, when both causes 1 and 2 were operative, the expectation of life at birth is 50
years. Observe that the elimination of one of two equal causes of death does not double the
expectation of life.

It will be well to reflect for a moment on the nature of this solution to the multiple
decrement problem. Does the theory allow us to predict how mortality would change if, to take
a specific case, cardiovascular disease were eliminated as a cause of death in the United States?
The answer is no. The mathematical theory given here provides only half the answer. The
other half would have to come from an empirical (and perhaps also theoretical) study aimed
at determining whether, if cardiovascular disease were eliminated, the forces of mortality for
other causes would in fact remain the same. It is certainly possible that they might, as the
above solution to the multiple decrement problem assumes. However it is also conceivable that
the elimination might change the interaction of the organism and the environment in such a
way as to necessarily result in changes in the force of mortality due to the remaining causes,
and in this case the above theory would be inadequate.

5. Cause of Death Life Tables

A multiple decrement life table is a life table in which the numbers of deaths in each age interval
are distributed according to the cause of death. Since the number of columns in a multiple
decrement table can easily become unmanageably large, it is conventional to present the data
in the form of two tables, one showing the ordinary life table for all causes of death combined,
the second indicating the incidence of the various causes of death. The latter table may give
either the distribution by cause of deaths occurring in each age interval, or the distribution by
cause of deaths occurring above specified ages. An extensive, critical, and international set of
multiple decrement life tables is given in [5].
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Multiple decrement tables are often accompanied by what are referred to as associated
single decrement tables for particular causes of death. The associated single decrement table
for a particular cause is the table which would result, according to the above theory, if this
cause of death were eliminated. Because of the redundancy of the various columns of the life
table, and because of the tremendous volume of numbers which arise, especially when many
causes of death are considered, it is customary to give only a single column of the associated
single decrement tables, usually the lx column.

It was suggested in the introduction to these notes that the probability of death, in the
presence of smallpox, by causes other than smallpox, would be lower than the probability of
death by all remaining causes after the elimination of smallpox. One obvious application of the
theory is to answer the question: how much lower? How important is it to invoke the theory in
making numerical estimates? To answer this question specifically for smallpox would involve
data collection and calculation that would take us too far afield here However the general point
may be taken up using examples taken from the tables given in [5]. For Australian males aged
60 in 1911, for example, the probability of death by age 65 from some cause was 0.l44. The
probability of death by causes other than cardiovascular diseases was 0.0827, 42 percent less
than the probability of death by some cause. However the probability of death by some cause
with cardiovascular disease eliminated equals 0.104, only 28 percent less than the overall death
probability in the presence of cardiovascular diseases.
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